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Abstract    This report describes an approach for representation of quantum entanglement through state 
matrix. The proposed approach could be used to allow encoding of more information. The Singular Value 
Decomposition is useful as a measure for entanglement because the unitary operations preserve it. 
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1. INTRODUCTION 
 
In the development process of a circuit quantum simulator [10, 11, 12] was required to seek solutions for 
representation of quantum entanglement. The study on the actual mathematics expressing the entanglement is 
much more enlightening than reading of popular scientific expositions for it. However, the question remains how to 
think about the entanglement in a useful way when solving problems. In this article is described an interesting 
approach for perception of the entanglement. The developed by the author of this article quantum circuit simulator 
enables dragging and dropping quantum gates on the circuit and displays presentations of the output state. Each 
quantum system is described with a bunch of complex weights, one for each basis state. To describe a system with n 
qubits are needed 2𝑛 weights, because it has 2𝑛 basis (i.e. classical) states. This makes the visual presentation of 
quantum states with more than a few qubits difficult, because there are so many numbers. For visual representation 
of the weights at the output of the circuit in the simulator can be used a vector-column. Each complex number is 
presented with an oriented circle, as they are arranged vertically in binary order (i.e. from |0000⟩ to |1111⟩). This 
leads to problems, even with four qubits. It is not only difficult to determine which weight is located where, but also 
the available space is used poorly due to the column being thin. Therefore, it is better to rearrange the column in a 
grid. 
The arrangement in a grid turned out to be a better solution. Suddenly, the operations on half of the qubits have 
row-wise effects, while the operations on the other half - column-wise effects. This can be used as a mnemonic tool.  

When working with circuits, which include two parts, the Side A's effects are distinguished from Side B's effects by 
submitting to Side A row-wise qubits, and to Side B - column-wise qubits. In the end it is noticed that the grid with 
the states acts as a matrix. If a complex entangled pair of qubits is created and a gate is applied to one of the qubits, 
the state would look like as a matrix for this gate. And the addition of another gate multiplies "the matrix" by the 
next gate. This helps to clarify how the broken symmetry will look. 

2. STATE TIMES OPERATION 

Let's examine the state 𝑆0 = 𝑎|00⟩ + 𝑏|10⟩ + 𝑐|01⟩+ 𝑑|11⟩, represented as the matrix 𝐺𝑟𝑖𝑑(𝑆0) = �𝑞 𝑏
𝑐 𝑑�

. What will 

happen when applying the operation 𝑈 = �
𝑒 𝑓
𝑔 ℎ� to the first qubit of 𝑆0? (The first qubit is the row-wise one.) 

After performing the computations: 

𝑆1 = (𝑈⨂𝐼).𝑆0 

= �𝑈 �𝑎𝑏��⨂|0⟩+ �𝑈 �𝑐𝑑��⨂|1⟩  
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= �
𝑒𝑎 + 𝑏𝑓
𝑎𝑔 + 𝑏ℎ�⨂|0⟩+ �

𝑒𝑐 + 𝑑𝑓
𝑐𝑔 + 𝑑ℎ�⨂|1⟩  

= (𝑒𝑎+ 𝑏𝑓)|00⟩+ (𝑎𝑔 + 𝑏ℎ)|10⟩+ (𝑒𝑐 + 𝑑𝑓)|01⟩+ (𝑐𝑔 + 𝑑ℎ)|11⟩ 

By rearranging the final state into a matrix is established that  

𝐺𝑟𝑖𝑑(𝑆1) = �
𝑒𝑎 + 𝑏𝑓 𝑎𝑔 + 𝑏ℎ
𝑒𝑐 + 𝑑𝑓 𝑐𝑔 + 𝑑ℎ�. This is also equal to 𝐺𝑟𝑖𝑑(𝑆0).𝑈𝑇. The results of applying a single qubit operation 

can be computed while avoiding the tensor product. The same phenomenon occurs when applying U to the second 
qubit, except that there is no transpose and the multiplication occurs on the other side:  𝐺𝑟𝑖𝑑(𝑆2) = 𝑈.𝐺𝑟𝑖𝑑(𝑆0) 

By representing the state as a matrix the application of operations is simplified. The operating on the first qubit (the 
row-wise one) is equivalent to subsequent multiplication of the state matrix by transpose of the operation. The 
operating on the second qubit (the column-wise one) is equivalent to preliminary multiplication of the state matrix 
by the operation. Also multi-qubit operations can be represented (for example controlled NOT-s, corresponding to 
flipping the bottom row or the right column), but they will not be used in this article. 

Particularly useful and convenient is that the operations are simplified in such a way. The reasoning for the 
simplified operations makes it obvious why the operations on different qubits must be reduced (they are 
accumulated on opposite sides). This facilitates also the understanding about the states that can be reached from 
any starting state ... Let's consider how the single qubits operations behave when starting from two different states: 

an unentangled classical "Single corner" state �1 0
0 0� and a completely entangled "shared diagonal" 

state�√0.5 0
0 √0.5

�. 

 
 

3. SINGLE CORNER 

When starting in the matrix state 𝑆0 = �1 0
0 0� what types of states can be reached by operating independently on 

the first and second qubits? 

With the writing of a test code can be experimented and to be seen what will be achieved by rotating and phasing 
both qubits. In particular, can be checked whether it will reach the entangled shared diagonal state: 
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Figure 1 Single Corner 

If 𝑈1 = �𝑎 𝑏
𝑐 𝑑� is applied to the first qubit and 𝑈2 = �

𝑒 𝑓
𝑔 ℎ� to the second qubit (always multiple operations can be 

merged by multiplying them together), is obtained: 

𝑆𝑓 = 𝑈2𝑆0𝑈1𝑇 

= �
𝑒 𝑓
𝑔 ℎ� �

1 0
0 0� �

𝑎 𝑏
𝑐 𝑑� 

= �𝑒 0
𝑔 0� �

𝑎 𝑏
𝑐 𝑑� 

= �𝑎𝑒 𝑏𝑒
𝑎𝑔 𝑏𝑔� 

= �
𝑒
𝑔� [𝑎 𝑏] 

It is found that 1) two of the four coefficients from each operation are eliminated, and that 2) the resulting state 
matrix can be described with just two complex ratios (plus a global phase factor that is irrelevant). The horizontal 
ratio is determined by operations on the first qubit, and the vertical ratio - by operations on the second qubit 

Examples of the types of states, which can be reached, include  

�√0.5 √0.5
0 0

� , �0.6 0.8
0 0 � , � √0.5 0

−√0.5 0
�        

𝑆0 = �√0.5 0
0 √0.5

�. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015                                                                      1353 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org 

It's impossible to reach the shared diagonal state from the Single corner state via independent operations, because 
the first state can't be represented by vertical and horizontal ratios 

4. SHARED DIAGONAL 

Let's now consider the matrix state �0.5 0.5𝑖
0.5𝑖 −0.5�. 

If checked more closely, will be noted, that the system behaves differently in a very few ways. For example, there are 
still states in which rotating the two qubits doesn't change the size of the circles much... but they're in a different 
place than they were in the Single corner case: 

 

Figure 2 Shared diagonal 

Let's analyze the situation algebraically, again. After applying 𝑈1to the first qubit and 𝑈2 to the second qubit, is 
obtained: 

𝑆𝑓 = 𝑈2𝑆0𝑈1𝑇 

= 𝑈2 �
√0.5 0

0 √0.5
�𝑈1𝑇 

= 𝑈2√0.5 𝐼𝑈1𝑇 

= √0.5 𝑈2𝑈1𝑇 

The starting state is a unitary matrix (times √0.5) and all the operations correspond to multiplying the state by a 
unitary matrix. So the final state will also be a unitary matrix (times √0.5). 
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Unlike in the Single corner case, none of the operations' matrix coefficients are being removed. Also, the effects of 
the operations are no longer orthogonal. Instead of one qubit controlling the horizontal, and another - the vertical, 
they both control everything. Everything that the side A can make on the first qubit, the side B can undo by applying 
an appropriate counter-operation to the second qubit. Or the side B can apply the same effect as the side A, 
effectively squaring the operation. Or the side A, if she knows what the side B will do, can put the system into any 
(unitary) final state she desires. 

Given the above facts, what is this interesting thing that could be done in the shared diagonal case, which can't be 
done in the Single corner case? The first is, that now Side A can put four numbers in the state instead of two. This 
would allow encoding of more information.  

CONCLUSION 
In 2 qubit non-entangled systems, the state acts like a matrix composed by combining two complex ratios. The 
ratios are controlled independently, and orthogonally by operations on either side. In 2 qubit entangled systems, 
the state acts like a unitary matrix. All the matrix coefficients are controlled by both sides, with overlapping effects. 
The effects can be moved between the sides, if this is convenient when designing circuits. The sides can undo or 

square each others' effects. Systems that are partially entangled, e.g. �0.8 0
0 0.6�, can be interpreted as a linear 

combination of non-entangled and entangled. The non-entangled and entangled states are like Singular Value 
Decomposition basis states. Larger systems, with multiple qubits per side (but still two sides), have more singular-
value-decomposition basis states. The Singular Value Decomposition is useful as a measure for entanglement 
because the unitary operations preserve it. All of this breaks down, if the sides are more than two. 
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